Curriculum Matters
How to Learn Hydrogen Technologies in the Secondary School
Absract. It is expected the involvement of the hydrogen technologies in many industry fields to be an essential feature of the sustainable development of the mankind. That’s why a positive attitude to those technologies should be shaped as soon as possible. The school provides such an opportunity. Two school subjects seem to be appropriate for successful learning of hydrogen technologies – ‘Man and Nature’ (early science education) and ‘Chemistry and Environment” (in secondary school). Ideas and proper examples for such kind of learning are presented and discussed in the present paper.
Keywords: hydrogen technologies, chemistry teaching and learning
References:
1. Митов, М., Я. Петров, С. Манев. Демонстрационен горивен елемент. Химия 14, 440-445 (2005).
2. Митов, М., Г. Христов, Е. Христова, С. Манев. Експерименти с демонстрационен горивен елемент Demi Cell (с. 106-109). В. Сборник с доклади на XXXV Национална конференция по въпроси на обучението по физика „Експериментът в обучението по химия”, Съюз на физиците в България, София, 2007.
3. Митов, М., Д. Николова, Е. Далева, Д. Митов, С. Манев. Демострационен модел на екологосъобразна енергийна система (с. 89-92). В.Сборник с доклади на XXXV Национална конференция по въпроси на обучението по физика „Експериментът в обучението по химия”, Съюз на физиците в България, София, 2007.
Corresponding author: v_dimitrova@mail.bg
V. Dimitrova, M. Mitov, S. Manev
Log in to read the full textTeaching Efficiency
A Study of Quality of Home Chemistry Activity Tools
Absract. This paper presents a study of quality of home chemistry experiments and their worksheets, designed for 7th grade students. Some requirements about the implementation of home chemistry experiments are considered. They are directed to the experimental equipment, safety, procedures and set of didactic requirements. On the base of such demands several indicators are defined and research tools are worked out, i.e. Control chart for determination of technical quality of home experiments and Control chart for determination of didactic quality of home activity worksheets. As a result, the chemistry experiments and worksheets with good quality are selected. They are appropriated for autonomous home activity of 7th grade students in chemistry.
Keywords: home chemistry activity, home chemistry experiments, worksheets quality
References:
1. Генджова, А., Л. Боянова. За домашния химичен експеримент. Химия 14, 280-288 (2005)
2. Haury, D., P. Rillero. Perspective of Hands-on Science Teaching. ERIC Clearinghouse for Science, Mathematics,and Environmental Education, Columbus, 1994.
3. Wilson, J., M. Stensvold. Improving Laboratory Instruction: An Interpretation of Research. J. College Science Teaching, 20, 350-353 (1991).
4. Малчева, З., Л. Генкова, В. Найденова. Методика и техника на учебния химичен експеримент. Унив. Издателство ”Неофит Рилски”, Благоевград, 2000.
5. Gendjova A. On the Selection of Home Chemical Experiments for Enhancing 7th Grade Pupils’ Interest to Chemistry. Chemistry 15, 29-39 (2006) In Bulgarian.
6. Генджова, А., Л. Боянова. Организация на домашни химични опити за повишаване интереса на учениците в седми клас. Химия, 14 , 289-299 (2005).
7. Генджова, А. Повишаване интереса на учениците към химията чрез домашни химични опити. Дисертация за образователната и научна степен „доктор”, София, 2007.
8. Боянова, Л., А. Соколова, Ш. Динков, З. Малчева. Тетрадка по химия 7. клас. Макрос 2001, Плoвдив., 1998.
9. Ольгин, О.Опиты без взрывов. Химия, Москва, 1986.
10. Пацова К., Т. Гюмюшева. Направи си сам. Практическа химия. Народна просвета, София, 1981.
11. Прес, Х. Да навлезем в науката с игри. Техника, София, 1987.
12. Гроссе, Е., Х. Вайсмантель. Химия для любознательных. Химия, Ленинград,1985.
13. Лилов И. , Л. Василева, С. Попов, К. Манолов, Б. Матеева, М. Миневска. Четива, любопитни факти и задачи по химия. Част 1. Народна просвета, София, 1988.
14. Brent R. The Golden Book of Chemistry Experiments – How To Set Up Home Laboratory – Over 200 Simple Experiments. Golden Press, New York, 1960.
15. Gardner, M. Entertaining Science Experiments with Everyday Objects. Dover, New York, 1981.
16. Arnold, N. Chemical Chaos. Scholastic, London, 1998.
17. VanCleave, J. Chemistry for Every Kid: 101 Easy Experiments that Really Work. Jossey-Bass, 1989.
18. Parrill, A.L. Everyday Chemical Reactions: A Writing Assignment to Promote Synthesis of Concept and Relevance in Chemistry. J. Chem. Educ. 77, 1303-1304 (2000).
19. Van Doren, J. M., L.P. Nestor, W.B. Knighton. Engaging Students in the Action of Chemistry: An Effective, Fun, and Inexpensive Outreach Program. J. Chem. Educ. 74, 1178 – 1179 (1997).
20. Cobb, V. Science Experiments You Can Eat. Harper Trophy, New York, 1984.
21. D’Amico J., K.E. Drummond. The Science Chef: 100 Fun Food Experiments and Recipes for Kids. Jossey-Bass, 1994.
22. Близнаков, Г., Л. Боянова, М. Минчева, М. Петрова. Химия. 7 клас. Просвета, Ссофия, 2003.
Author’s E-Mail: agendjova@chem.uni-sofia.bg
A. Gendjova
Teaching Chemical Experiment
The Economic Demonstrator: Prepare It Once, Use It Many Times. III. Phenomena of Discontinous Thermochromism
Absract. Sealed ampoules containing solids that show pronounced thermochromism were prepared, thus continuing the series “prepare it once – use it many times” of the economic demonstrator. Two types of thermochromic solids were prepared: silver, copper(I) and thallium(I) tetraiodomercurate(II), on one hand, and diethylammonium tetrachloro¬cuprate or tetrachloronickelate, on the other.
Keywords: thermochromism, discontinuous; silver tetraiodomercurate(II); copper(I) tetraiodomercurate(II); thallium(I) tetraiodomercurate; diethylammonium tetrachloro¬cuprate(II); diethylammonium tetrachloro¬nickelate(II)
References:
1. Monković, M., V.M. Petruševski, M. Bukleski. The Economic Demonstrator: Prepare It Once, Use It Many Times. I. Continuous Thermochromism in the NO2 – N2O4 System – Equilibrium Shifts Induced by Temperature Changes. Chemistry 15, 256–264 (2006).
2. Petruševski, V.M., M. Bukleski, M. Monković. The Economic Demonstrator: Prepare It Once, Use It Many Times. II. Continuous Thermochromism in Aqueous Solutions of Transition Metal Chlorides. Chemistry. 16, 20–26 (2007).
3. Summerlin, L.R., J.L. Ealy, Jr. Chemical Demonstrations. A Sourcebook for Teachers, Vol. 1, 2nd Edition, American Chemical Society, Washington, 1988, pp. 79–80.
4. Summerlin, L.R., J.L. Ealy, Jr. Chemical Demonstrations. A Sourcebook for Teachers, Vol. 1, 2nd Edition, American Chemical Society, Washington, 1988, pp. 83–84.
5. Shakhashiri, B.Z. Chemical Demonstrations: A Handbook of Teachers of Che¬mistry, Volume 1. University of Wisconsin Press, Madison, 1983, pp. 280–285.
6. Shakhashiri, B.Z. Chemical Demonstrations: A Handbook of Teachers of Che¬mistry, Volume 1. University of Wisconsin Press, Madison, 1983, pp. 314–317.
7. Lavabre, D., J. Micheau, G. Levy. Comparison of Thermochromic Equilibria of Co(II) and NI(II) Complexes. J. Chem. Educ. 65, 274–277 (1988).
8. Bare, W.D., E.K. Mellon. Thermochromic Behavior of Cobalt(II) Halides in Nonaqueous Solvents and on Filter Paper. J. Chem. Educ. 68, 779–780 (1991).
9. Hughes, J.G. Thermochromic Solids. J. Chem. Educ. 75, 57 (1998).
10. Van Oort, M.J.M. Preparation of Simple Thermochromic Solids. J. Chem. Educ. 65, 84 (1988).
11. Choi, S., A. Larrabee. Thermochromic Tetrachlorocuprate (II): An Advanced Integrated Laboratory Experiment. J. Chem. Educ. 66, 774–776 (1989).
12. Changyun, C., Z. Zhihua, Z. Yiming, D. Jiangyan. Solid State Synthesis of a Thermochromic Compound. J. Chem. Educ. 77, 1206–1207 (2000).
13. Day, J.H. Thermochromism of Inorganic Compounds. Chem. Rev. 68, 649–657 (1968).
14. Jaw, H.R.C., M.A. Mooney, T. Novinson, W.C. Kaska, J.I. Zink. Optical Properties of the Thermochromic Compounds Disilver Tetraiodomercurate(2-) and Dicopper Tetraiodomercurate(2-). Inorg. Chem. 26, 1387–1391 (1987).
15. Roesky, H.W., K. Mockel. Chemical Curiosities, VCH, Weinheim, 1996, pp. 249–250.
16. Aleksovska, R., M. Livneh, M. Najdoski. Thermochromism of the Macedonian Flag. Bull. Chem. Technol. Macedonia 24, 157–161 (2005).
Corresponding Author: vladop@iunona.pmf.ukim.ed.mk
V.M. Petrusevski, M. Bukleski
From the Research Laboratories
Spectrophotometric-Partial Least-Squares Calibration Method for Determination of Cobalt, Nickel, Copper and Zinc Simultaneously in Micellar Media
Absract. A spectrophotometic-partial least-squares method was proposed for simultaneously determination of cobalt, nickel, copper and zinc in micellar media. Methyl thymol blue and cetyltrimethylammonium bromide were used as a color reagent and a surfactant, respectively. Absorbance measurements were made in the amplitude of 560-680 nm with 1.5 nm steps in buffered solutions at pH 6. The linear ranges were obtained in the amplitude of 0.05-3.00, 0.10-4.00, 0.10-3.00 and 0.05-3.50 µg ml-1 for Co2+, Ni2+, Cu2+ and Zn2+ ions, respectively. The proposed method was used for simultaneously determination of mentioned metals in synthetic alloy samples. The satisfactory results were showed that the method was applicable for the analysis of samples with similar matrix.
Keywords: partial least-squares method, Methyl thymol blue, cobalt, nickel, copper and zinc
References:
Booksh, K.S., B.R. Kowalski. Theory of Analytical Chemistry, Anal. Chem. 66, 782A-791A (1994).
2. Kuswandi, B., A. Vaughan, R. Narayanaswamy. Simple Regression Model Using an Optode for the Simultaneous Determination of Zinc and Cadmium Mixtures in Aqueous Samples. Anal. Sci. 17, 181-186 (2001).
3. Ni, Y., Trace Metal Determinations by Spectrophotometry with a Double Chromogenic System and a Chemometric Approach. Anal. Chim. Acta 284, 199-205 (1993).
4. Marengo, E., M.C. Gennaro, D. Giacosa, C. Abrigo, G. Saini, M.T. Avignone. How Chemometrics Can Helpfully Assist in Evaluating Environmental Data. Lagoon Water. Anal. Chim. Acta 317, 53-63 (1995).
5. Wold, S., M. Sjostrom, L. Eriksson. PLS-regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 58, 109-130 (2001).
6. Abdollahi, A., M. Shariat Panahi, M.R. Khoshayand. Simultaneous Spectrophotometric Determination of Iron, Cobalt, and Copper by Partial Least-Squares Calibration Method in Micellar Medium, Iranian J. Pharm. Res. 207-217 (2003).
7. Lorber, A., L. Wangen, B.R. Kiwalski. A Theoretical Foundation for the PLS Algorithm. J. Chemom. 1, 19-31 (1986).
8. Haaland, D.M., E.V. Thomas. Partial Least-squares Methods for Spectral Analysis. Anal. Chem. 60, 1193-1202 (1988).
9. Ghasemi, J., S. Ahmadi, K. Torkestani. Simultaneous Determination of Copper, Nickel, Cobalt and Zinc using Zincon as a Metallochromic Indicator with Partial Least Squares. Anal. Chim. Acta 487, 181-188 (2003).
10. Safavi, A., H. Abdollahi, M. Mirzajani. Simultaneous Spectrophotometric Determination of Fe(III), Al(III) and Cu(II) by Partial Least-squares Calibration Method. Spectrochim. Acta A 63, 196-199 (2006).
11. Absalan, G., M. Nekoeinia. Simultaneous Kinetic Determination of Fe(II) and Fe(III) Based on Their Reactions with NQT4S in Micellar Media by Using PLS and PCR Methods. Anal. Chim. Acta 531, 293-298 (2005).
12. Stangel, G.I., D.A. Roth-Maier, M. Kirchessner. The Findings Indicate a Collaborative Relationship between Vitamin B-12 Metabolism and the Trace Elements Nickel and Cobalt. J. Nutrition 130, 3038-3044 (2000).
13. El-Naggar, M.M., A.M. El-Waseef, K.M. El-Halafawy, I.H. El-Sayed. Antitumor Activities of Vanadium(IV), Manganese(IV), Iron(III), Cobalt(II) and Copper(II) Complexes of 2-Methylaminopyridine. Cancer Letter 133, 71-76 (1998).
14. Zeng, W., Y. Chen, H. Cui, F. Wu, Y. Zhu, J.S. Fritz. Single-Column Method of Ion Chromatography for the Determination of Common Cations and Some Transition Metals. J. Chromatography A 1118, 68-72 (2006).
15. Atanassova, A., R. Lam, D.B. Zamble. A High-performance Liquid Chromatography Method for Determining Transition Metal Content in Proteins. Anal. Biochem. 335, 103-111 (2004).
16. Li, Z., G. Yang, B. Wang, C. Jiang, J. Yin. Determination of Transition Metal Ions in Tobacco as Their 2-(2-quinolinylazo)-5-dimethylaminophenol Derivatives Using Reversed-phase Liquid Chromatography with UV–VIS Detection. J. Chromatography A 971, 243-248 (2002).
17. Rao, K.S., T. Balaji, T. Prasada Rao, Y. Babu, G.R.K. Naidu. Determination of Iron, Cobalt, Nickel, Manganese, Zinc, Copper, Cadmium and Lead in Human Hair by Inductively Coupled Plasma-atomic Emission Spectrometry. Spectrochim. Acta B: Atomic Spec. 57, 1333-1338 (2002).
18. Türkmen, M., C. Ciminli. Determination of Metals in Fish and Mussel Species by Inductively Coupled Plasma-atomic Emission Spectrometry, Food Chem. 103, 670-675 (2007).
19. Lau, O.W., S.Y. Ho. Simultaneous Determination of Traces of Iron, Cobalt, Nickel, Copper, Mercury and Lead in Water by Energy-dispersive X-ray Fluorescence Spectrometry After Preconcentration as Their Piperazino-1,4-bis(dithiocarbamate) Complexes. Anal. Chim. Acta 280, 269-277 (1993).
20. Vos, L., Z. Komy, G. Reggers, E. Roekens, R. Van Grieken, R. Determination of Trace Metals in Rain Water by Differential-pulse Stripping Voltammetry Anal. Chim. Acta 184, 271-280 (1986).
21. Garcia-Vargas, M., M.P. Hernandez-Artiga, J.A. Perez-Bustamante. Liquid-Liquid Extraction with 2-acetylpyridinebenzoylhydrazone in the Determination of Traces of Copper, Nickel, Cobalt and Zinc by Atomic Absorption Spectrometry. Anal. Chim. Acta 157, 363-367 (1984).
22. Ármannsson, H. Dithlzone Extraction and Flame Atomic Absorption Spectrometry for the Determination of Cadmium, Zinc, Lead, Copper, Nickel, Cobalt and Silver in Sea Water and Biological Tissues. Anal. Chim. Acta 110, 21-28 (1979).
23. Tuzen, M., M. Soylak. Trace Element Levels in Honeys from Different Regions of Turkey. Anal. Chim. Acta 504, 325-330 (2004).
24. Ármannsson, H. The Use of Dithizone Extraction and Atomic Absorption Spectrometry for the Determination of Cadmium, Zinc, Copper, Nickel and Cobalt in Rocks and Sediments. Anal. Chim. Acta 88, 89-95 (1977).
25. Pouretedal, H.R., M. Rafat. Simultaneous Determination of Copper and Nickel by Second-derivative Spectrophotometric Method in Micellar Media. Chinese J. Chem. Soc. 54, 157-164 (2007).
26. Pouretedal, H.R., M.H. Keshavarz. Determination of Trace Amount of Vanadium by Kinetic-Catalytic Spectrophotometric Methods. Chinese J. Chem. 24, 557-565 (2006).
27. Kalivaz, J.H.. Basis Sets for Multivariate Regression. Anal. Chim. Acta 428, 31-40 (2001).
28. Ghasemi, J., R. Amini, A. Niazi. Kinetic Simultaneous Determination of Fe(II) and Fe(III) Using Partial Least Squares (PLS) and Principal Component Regression (PCR) Calibration Method. Anal. Lett. 35, 533-544 (2002).
29. Martens, H., T. Naes. Multivariate Calibration, Wiley, Chichester, 1989.
30. Beebe, K.R., B.R. Kowalski. Nonlinear Calibration Using Projection Pursuit Regression: Application to an Array of Ion-selective Electrodes. Anal. Chem. 60, 2273-2278 (1988).
31.Safavi, A., M. Mirzaee, A. Abdollahi. Simultaneous Spectrophotometric Determination of Iron, Titanium, and Aluminum by Partial Least-Squares Calibration Method in Micellar Medium. Anal. Lett. 36, 699-712 (2003).
32. Diaz Garcia, M.E., A. Sanz-Medel. Dye-surfactant Interactions: A Review. Talanta 33, 255-264 (1986).
33. Jin, G., W. Zhu, W. Jiang, B. Xie, B. Cheng. Spectrophotometric Determination of Cobalt(II) Using the Chromogenic Reagent 4,4-Diazobenzenediazoaminoazobenzene in a Micellar Surfactant Medium,
Analyst 122, 263-265 (1997).
34. Haaland, D.M., E.V. Thomas. Partial Least-squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information. Anal. Chem. 60, 1193-1202 (1988).
Corresponding Author: HR_POURETEDAL@mut-es.ac.ir
H.R. Pouretedal, M.H. Keshavarz, A. Semnani, M. Rafat