Editorial
Equilibrium and Cyclic Processes
D. Lazarov
Curriculum Matters
On the Application of Both the State Core Curricula Requirements and the Programme of Study of Chemistry and Environmental Protection in the 10th Form of the Secondary School
Absract. Discussion on the application in practice of both the State Core Curricula Requirements for the upper secondary school and the Programme of study for the 10th form, compulsory level, in Chemistry and Environmental Protection, is presented. Some shortcomings and disadvantages in statements of expected attainment outcomes are identified. A revised version of the school programme of study for the 10th form is proposed. It would afford an opportunity to improve the diagnostics and evaluation of pupils’ achievements.
Keywords: chemistry education, education standards, goal taxonomy
References:
1. Бояджиева, Е., М. Кирова, С. Манев. Анализ на държавните образователни изисквания за учебно съдържание по химия и опазване на околната среда. Химия. 14, 261-264 (2005).
2. Цанова, Н. Стандарти и учебни програми по биология – начин на употреба. Pensoft, София-Москва, 2007.
3. Станев, С. (ред). Методология и технология за създаване на държавните образователни стандарти. НИО, София, 2000.
4. Bloom, B.S., D.R. Krathwohl. Taxonomy of Educational Objectives: The Classification of Educational Goals. Handbook I: Cognitive Domain. Longmans, New York, 1956.
5. Министерство на образованието и науката. Учебни програми IV част. За задължителна и профилирана подготовка IX, X, XI и XII клас. Културнообразователна област: Природни науки и екология. ГРПИ, София, 2003.
Corresponding author: leni_b@abv.bg
E. Boiadjieva, M. Kirova, A. Tafrova-Grigorova
Curriculum Matters
Design of a Technology Towards the Environmental Education through Teaching and Learning Chemistry
Absract. An attempt is carried out to construct a technology for environmental education through the chemistry lessons. The components of that technology, namely, educational approaches, forms, methods and tools, together with their interrelations, are elucidated. The applicability of the technology has been experimentally proved.
Keywords: ecological education, teaching chemistry
References:
1. Василев, В., Й. Димова, Т. Коларова-Кънчева. Рефлексия и обучение. Част I. Рефлексията – теория и практика. Макрос, Пловдив, 2005.
2. Петров, П., М. Атанасова. Образователни технологии и стратегии на учене. Веда Словена ЖГ, София, 2001.
3. Селевко, Г. Современные образовательные технологии. Народное образование, Москва, 1998.
4. Гергова, Е., А. Ангелачева. Актуализиране на целите на екологичното образование чрез обучението по химия. В.: Науката, методиката и училището – конфликтни точки, срещи и разминавания. Юбилейна научно-практическа конференция Том II. ПУ „П. Хилендарски.” Смолян, 2002, с. 89-92.
5. Gergova, E., A. Angelacheva. A Proper Curriculum for Environmental Education. Chemistry 12, 133-141 (2003) [In Bulgarian].
6. Гергова, Е., З. Малчева. Ролята на нагледността за оптимално прилагане на проблемния подход в учебния процес по химия. Научни трудове на Пловдивския университет „Паисий Хилендарски” 21(1), 237-256 (1984).
7. Гергова, Е., А. Софрониева, Р. Дойчинова. Ролята на химичния експеримент за екологичната подготовка на учениците. В.: Боянова, Л., Л. Генкова (съст.) Химия, образование, околна среда. 36-а Национална конференция на учителите по химия в България. София, 1995, с. 154-157.
8. Ангелачева, А. Учебният химичен експеримент – важен резерв за повишаване на екологичната култура на учениците. В.: Рыбалский, Н., В. Ненов (ред.) Научни публикации от 14-тия Международен симпозиум „Екология 2005”, Том III, Част 3. Наука Инвест, Бургас, с. 140-146.
9. Ангелачева, А., Е. Гергова. Роля на задачите в обучението по химия за екологично образование. Научни трудове на Пловдивския университет „Паисий Хилендарски” 30(5), 145-149 (2001).
10. Ангелачева, А., Е. Гергова. Осъществяване на екологично образование чрез нетрадиционни организационни форми по химия. Научни трудове на Пловдивския университет „Паисий Хилендарски” 39(2), 13-25 (2002).
11. Гергова, Е., Л. Начева. Семинарните занятия в обучението по химия в 10. клас. Научни трудове на Пловдивския университет „Паисий Хилендарски” 31(2), 105-114 (1994).
Corresponding author: guergova@argon.acad.bg
E. Gergova, A. Angelacheva
Teaching Efficiency
Multimedia Modules on the Structure of Organic Compounds
Absract. Multimedia modules on hybridization, constitutional and stereo-isomerism have been developed. The module Hybridization of Atomic Orbitales consists of two sections, which are sampled on the carbon and nitrogen atoms. The Constitutional Isomerism module comprises three sections: Chain, Positional and Functional Isomers. The two sections of the module Stereoisomerism concern Enantiomers and Diastereomers. Each module is designed in similar manner: a tutorial section to support learning with basic information, and a test section to assist the acquisition of the new concepts and self-training. Most of the samples are represented by three-dimensional models, some of them are animated. The subject matter matches both the chemistry curricular content of the foreign students’ preparatory course and the Bulgarian Secondary School.
Keywords: multimedia, hybridization, organic compounds, constitutional isomerism, stereoisomerism
References:
1. Косекова, Г. Web-базирано обучение в Медицинския университет – София. Химия/Chemistry 14, 413-420 (2005).
2. Тафрова-Григорова А., И. Барановска, К. Янкулова. Мултимедийни модули за обучение по химия. В.: Николаева, С., В. Гюрова, Б. Господинов (ред.) Международна конференция “Университетското образование – предизвикателства и перспективи през XXI век”. Унив. изд. „Св. Климент Охридски“, София, 2006, с. 146-152.
3. Тафрова-Григорова, А., К. Янкулова, И. Барановска. Мултимедийни модули – химична връзка. Химия/Chemistry 16, 92-98 (2007).
4. McMurry, J.E. Organic Chemistry (3rd Еdn.). Wadsword, Belmont, 1992.
5. Петров, Г. Органична химия. Унив. изд. „Св. Климент Охридски“, София, 2006.
Corresponding author: a_grigorova@yahoo.com
A. Tafrova-Grigorova, K. Yankulova, I. Baranovska
Teaching Efficiency
Teaching of the Water Waves: Effectiveness of Using Computer Simulations on Students Success and Elimination of Misconceptions
Absract. In this study, we investigated effectiveness of simulations on students’ success and elimination of misconceptions regarding water waves. For this aim, one of the classes was assigned randomly to the control group, and the other class was assigned randomly to the experimental group. During teaching the water waves concepts in the physics curriculum, computer simulations were applied in the experimental group whereas traditional instruction was followed in the control group. As a result, we determined that the experimental group showed better performance than control group in terms of the success and elimination of misconceptions.
Keywords: simulation, water waves, high school, success, teaching, misconception
References:
1. White, B.Y., J.R. Frederiksen. Inquiry, Modeling, and Metacognition: Making Science Accessible to All Students. Cognition & Instruction 16, 3-118 (1998).
2. Gillies, A.D., B.D. Sinclair, S.J. Swithenby. Feeling Physics: Computer Packages for Building Concepts and Understanding. Phys. Educ. 31, 362-368 (1996).
3. Guisasola, I. Barragués, P. Valdés, R. Valdés, F. Pedroso. Getting Students Familiar with the Use of Computers: Study of the Falling of a Body in a Fluid. Phys. Educ. 34, 214-219 (1999).
4. Mayer, R.E., R.B. Anderson. The Instructive Animation: Helping Students Build Connections between Words and Pictures in Multimedia Learning. J. Educational Psychology 88, 444-452 (1992).
5. Nachmias, R., R. Stavy, R. Avrams. A Microcomputer-Based Diagnostic System for Identifying Students’ Conceptions of Heat and Temperature. Int. J. Science Education 12, 123-132 (1990).
6. Weller, H.G. Diagnosing and Altering Three Aristotelian Alternative Conceptions in Dynamics: Microcomputer Simulations of a Scientific Model. J. Res. Sci. Teaching 32, 271-290 (1988).
7. Stewart, M.F., J.R. Gregory. Production of a Multimedia CAL Package in Basic Physics. Physics Education 32, 332-339 (1997).
8. Rieber, L.P. Using Computer Animated Graphics in Science Instruction with Children. J. Educational Psychology 82, 135-140 (1990).
9. De Jong, T., W.R. van Joolingen. Scientific Discovery Learning with Computer Simulations of Conceptual Domains. Review Educational Research 68, 179-201 (1998).
10. Penner, D.E. Cognition, Computers, and Synthetic Science: Building Knowledge and Meaning through Modeling. Review Research Education 25, 1-35 (2001).
11. Kulik, J.A., C.C. Kulik. Effectiveness of Computer-Based Instruction. School Library Media Quarterly 17, 19-21 (1989).
12. Mayer, R.E., R. Moreno. Aids to Computer-Based Multimedia Learning. Learning & Instruction 12, 107-119 (2002).
13. Hewson, P.W. Microcomputer, Conceptual Change and the Design of Science Instruction: Examples from Kinematics and Dynamics. South African J. Science 80, 15-20 (1984).
14. Bliss, J., J. Ogborn. Tools for Exploratory Learning. J. Computer Assisted Learning 5, 37-50 (1989).
15. Zietsman, A.I., P.W. Hewson. Effect of Instruction Using Microcomputer Simulations and Conceptual Change Strategies on Science Learning. J. Res. Sci. Teaching 23, 27-39 (1986).
16. White, B., P. Horwitz. Computer Microworlds and Conceptual Change: A New Approach to Science Education. In.: Ramsden, P. (Ed.) Improving Learning: New Perspectives. Kogan Page, London, 1988, pp. 69-80.
17. McDermott, L.C. Research and Computer-Based Instruction: Opportunity for Interaction. Am. J. Phys. 58, 452-462 (1990).
18. Gorsky, P., M. Finegold. Using Computer Simulations to Restructure Students’ Conception of Force. J. Computers Math. & Sci. 11, 163-178 (1992).
19. Boettcher, E., S. Alderson, S. Sarcucci. A Comparison of the Effects of Computer-Assisted Instruction versus Printed Instruction on Student Learning in the Cognitive Categories of Knowledge and Application. J. Computer-Based Instruction 8, 13-17 (1981).
20. Damon, W. Peer Education: The Untapped Potential J. Appl. Develop. Psychology 5, 331-343 (1984).
21. Damon, W., E. Phelps. Critical Distinction among Three Approaches to Peer Education. Int. J. Educational Research 13, 9-19 (1989).
22. Hennesy, S., D. Twigger, R. Driver, T. O’Sha, C.E. O’Malley, M. Byard, S. Draper, R. Hartley, R. Mohamed, E. Scanlon. A Classroom Intervention Using a Computer-Augmented Curriculum for Mechanics. Int. J. Sci. Educ. 17, 189-206 (1995).
23. Yee, T.C., M.Y. Arshad. Penggunaan simulasi komputer bagi merealisasikan fenomena tidak sahih: Satu alternatif mewujudkan konflik kognitif dalam pembelajaran sains. J. Pendidikan Univ. Tekn. Malaysia 17, 75-92 (2000).
24. Rieber, L.P., S.-C. Tzeng, K. Tribble. Discovery Learning, Representation, and Explanation within a Computer-Based Simulation: Finding the Right Mix. Learning & Instruction 14, 307-323 (2004).
25. Monaghan, J.M., S. Bernardino, J. Clement. Use of a Computer Simulation to Develop Mental Simulations for Understanding Relative Motion Concept. Int. J. Sci. Educ. 12, 123-132 (1999).
Author’s e-mail: rdilber@atauni.edu.tr
R. Dilber
From the Research Laboratories
Investigation of Energy and NMR Isotopic Shift on the Internal Rotation Barrier of Theta4 Dihedral Angle of the DPLC: A GIAO Study
Absract. The ‘Gauge Including Atomic Orbital’ (GIAO) approach is used to investigate the question of intermolecular rotation. Ab initio GIAO calculations of NMR chemical shielding tensors carried out within SCF-Hartree-Fock approximation are described. The influence of the internal rotating on shielding tensors in dilauroyl phosphatidylcholine (DLPC) is studied; we observe a marked dependence of nuclear shielding and chemical shift on the torsional movement. Their applicability to model case for rigid or freely rotating DLPC (the fluid Lα phase) with internal rotating between chains around the glycerol C (2)-C (3) bonds (θ4 dihedral angle) discussed and simple calculation conformational energies for each rotation are presented. In some of phospholipids structure, it is limited to measure the energy of θ4 dihedral angle practically, but studying on this model for consideration of phospholipids function is very important, because during fluid Lα phase lipid’s tails can move easily so we can determine the mathematical relationship between Energy and NMR isotropic shift in ampheric shape with usage of indirect relationship of NMR. Finally it will be useful for detecting of the attitude of DLPC in the shapes and forms in this phase. On the basis of this work it can be concluded that intermolecular rotation between chains clearly affects on the variation energy as well as variation of the shielding tensor on a nucleus in DLPC molecule.
Keywords: DLPC, NMR shielding, theta4 dihedral, isotopic, anisotropic, rotation barrier
References:
Deavaux, P.F., R. Morris. Transmembrane Asymmetry and Lateral Domain in Biological Membranes. Traffic 5, 241-246 (2004).
2 Jain, M. K., R.C. Wagner. Introduction to Biological Membranes. John Wiley & Sons, New York, 1980.
3 Brasseur, R., J.-M. Ruysschaert. Conformation and Mode of Organization of Amphiphilic Membrane Components: A Conformational Analysis. Biochem. J. 238, 1-11 (1986).
4. Chiu, S.W, M. Clark, V. Balaji, S. Subramaniam, H.L. Scott, E. Jakobsson. Incorporation of Surface Tension into Molecular Dynamics Simulation of an Interface: A Fluid Phase Lipid Bilayer Membrane. Biophys J. 69, 1230–1245 (1995).
5. Strenk, L.M., P.M. Westerman, J.W. Doane. A Model of Orientational Ordering in Phosphatidylcholin Bilayers Based on Conformational Analysis of the Glycerol Backbone Region. Biophys. J. 48, 756-773, (1985).
6. Sundaralingam, M. Molecular Structures and Conformations of the Phospholipids and Sphingomyelins. Ann. NY Acad. Sci. 195, 324-355 (1972).
7. Finer, E. G., A. G. Flook, H. Hauser. The Nature and Origin of the NMR Spectrum of Unsonicated and Sonicated Aqueous Egg Yolk Lecithin Dispersion. Biochem. & Biophys. Acta. 260, 59-69 (1972).
8. Hung, W.-C., F.-Y. Chen. The Hydrocarbic-Hydrophilic Interface of Phospholipids Membranes Studies by Lamellar X-Ray Diffraction. Chinese J. Phys. 41, 85-91 (2003).
9. Tossel, J.A. Nuclear Magnetic Shielding and Molecular Structure. Kluwer, Amsterdam, 1993.
10. Belohorcova, K., J. Quan, J.H. Davis. Molecular Dynamic and 2H-NMR Study of the Influence of an Amphilic Peptide on Membrane Order and Dynamics. Biophys. J. 79, 3201-3216 (2000).
11. Ando, I., G.A. Webb. Theory of NMR Parameters. Academic Press, London, 1983.
12. Tu, K., D.J Tobias, J K Blasie, M L Klein. Molecular Dynamics Investigation of the Structure of a Fully Hydrated in Gel-phase Dipalmitoylphosphatidylcholine Bilayer. Biophys J. 70, 595–608 (1996).
13. Pascher, I., S. Sundell. Membrane Lipids: Preferred Conformational States and Their Interplay. The Crystal Structure of d D Lauroylphosphatidyl-N,N-dimethylethanolamine. Biochim. & Biophys. Acta. 855, 68-78 (1986).
14. Nagle, J.F. Evidence of Partial Rotational Order in Gel Phase DPPC. Biophys J. 64, 1110-1112 (1993).
15. Hehre, W.J., L. Radom, P.V. Schleyer, J. Pople. Ab Initio Molecular Orbital Theory. Wiley, 1986.
16. Facelli, J. C., D.M. Grant, T.D. Bouman, A.E. Hansen. A Comparison of the IGLO and LORG Methods for the Calculation of Nuclear Magnetic Shieldings. J. Comp. Chem. 11, 32-44 (1990).
17. Frisch, M.J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, Ö. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komáromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J.A. Pople, Gaussian 98 , Gaussian, Inc., Pittsburgh, 1998.
18. Landin, J., I. Pascher. Effect of a Polar Environment on the Conformation of Phospholipids Head Group Analyzed with the Onsager Continuum Solvation Model. J. Phys. Chem. A 101, 2996-3004 (1997).
19. Cramer, C.J. Essentials of Computational Chemistry – Theories and Models. Wiley, 2002.
20. Hauser H, I. Pascher, R.H. Pearson, S. Sundell. Preferred Conformation and Molecular Packing of Phosphatidylethanolamine and Phosphatidylcholine. Biochim. & Biophys. Acta. 650, 21–51 (1981).
21. Robinson A.J, W.G. Richards, R.J., Thomas, M.M. Hann. Head Group and Chain Behavior in Biological Membranes: A Molecular Dynamics Computer Simulation. Biophys J. 67, 2345–2354 (1994).
22. Pascher, I., M. Lundmark, P.G. Nyholm, S. Sundell. Crystal Structures of Membrane Lipids. Biochem. & Biophys. Acta. 1113, 339-373 (1992).
M. Monajjemi, S. Afsharnezhad, M.R. Jaafari, S. Mindamadi, F. Mollaamin, H. Monajemi